
Cross-Domain Diagram Sketch Recognition

Paul Schmieder
1
, Beryl Plimmer

1
, Jean Vanderdonckt

2

1
University of Auckland,

Private Bag 92019

 Auckland, New Zealand
{psch068@ec, beryl@cs}.auckland.ac.nz

2
Université catholique de Louvain

Place des Doyens 1

1348 Louvain-la-Neuve, Belgium
jean.vanderdonckt@uclouvain.be

Abstract

Diagrams are often used to model complex systems:

in many cases several different types of diagrams are

used to model different aspects of the system. These

diagrams, perhaps from multiple stakeholders of

different specialties, must be combined to achieve a

full abstract representation of the system. Many CAD

tools offer multi-diagram integration, however sketch-

based diagramming tools are yet to tackle this difficult

integration problem. We extend the diagram sketching

tool InkKit to combine software engineering sketches

of different types so as to automatically generate one

or multiple code-specific outputs which interact with

each other. Our extensions support software design

processes by providing a sketch-based approach that

allows the creation of multiple outputs interacting with

one another from the inter-linked diagram input.

1. Introduction

 The use of pen and paper is the most natural way to

draft ideas in a non-digital environment and the

methods to accomplish the same tasks on the computer

world should be similar. This interaction can be

achieved by using a digital stylus rather than keyboard

and mouse. Studies show that, while there is still no

equality in familiarity and intuitiveness between the

classical way to bring ideas down and its digital

counterpart [2, 24], there is a clear preference for

computer-based sketch tools over their widget based

equivalents because of the more intuitive interaction

offered by the digital pen [8, 21].

Computer based sketch tools offer different features

depending on the program‟s domain and implemented

functionality. While simple implementations of sketch

tools offer a canvas to draw on, more sophisticated

ones additionally recognize the sketches. Due to the

diversity of possible sketches the demands on the

underlying algorithms are high. On one hand they have

to cover all possible shapes and on the other hand they

have to successfully differentiate between the shapes,

even when they look very similar. Once the sketch is

recognized, it can be interpreted and converted into

symbolic expressions which represent the user's intent.

There are different diagram domains which can be

sketched in a digital environment such as user interface

(UI) and entity-relationship (ER) diagrams. The former

outlines the design of a graphical user interface; the

latter are used to specify database drafts at a

preliminary stage, including the relationships between

their components. While a number of sketch tools can

recognize a specific type of diagram and translate it

into a formal representation or, in the case of software,

generate code, we are not aware of any sketch tools that

combine different types of diagrams to generate a more

compete model or system.

InkKit [18] is a software toolkit used to recognize

and convert user-drawn sketches into other

representations. Its layered design allows an easy and

intuitive implementation of new domains. Each domain

consists of one recognizer and multiple output

modules. This means that once a domain-specific

interpreter is implemented, output can be generated in

various formats. For example, a user interface sketch

can be converted into HTML, Java or other “output

specific” code after being recognized. InkKit can

recognize sketched diagrams which are split into

several parts as shown in Figure 1.

In this project we extended InkKit so that it

combines the interpretation results of different types of

diagrams. These independent diagrams can interact

with each other because the necessary information is

exchanged during the interpretation process. Our

exemplar is ER and UI diagrams that are recognized

and used to generate a database and connected user

interface. Afterwards the user can enter data in the UI

which is then transmitted to the database. This way of

combining recognition results from different hand-

drawn sketches enables new opportunities for

collaborative work. At a preliminary stage of design

people with skills from different areas could work

together or independently. Once they are finished, they

could import their sketched ideas into one project and

link the related parts which can then be further

processed.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 64

In the next section the related work is presented,

followed by the detailed description of our approach.

In the fourth section the work is discussed before the

final conclusions and future work.

2. Motivation

Complex systems, in a wide variety of different

domains, including architecture and engineering,

natural systems and software, are often defined by

abstract models. Because of the complexity of such

systems, different models are used to describe different

aspects of the system. Yet the system itself is a

complex interplay of these different models. In many

cases diagrams are used as the visualization of the

model.

Software systems are a particularly interesting

example of abstract models and diagrams because the

model can be used to generate the system. Increasingly

software modeling tools support code generation. Yet,

because of the formality and constraints of these tools

such formal models are rarely used during initial

design. Instead people revert to using whiteboards and

scraps of paper. Sketch tools aim to bridge this gap and

sketch toolkits with configurable recognition engines

are allowing us to more easily explore the intersection

between tools, models and systems.

There are various methodologies, models and

diagrams used to describe software systems (for

example UML). However, at the most basic level,

„ordinary‟ software systems consist of a user interface,

data and processes. Figure 2 shows a simple set of

three diagrams that could be used in a first interaction

of a design. Our goal is to take a set of related diagrams

like this and use them to generate the software system.

Figure 1. InkKit portfolio manager which contains two

sketch pages connected via a rubberband

3. Related Work

Sketch tools can be differentiated by their basic

features such as their recognition engine, their ability to

process text or the domains they recognize. The latter

can be furthermore subdivided into single- and multi-

domain recognizers. The recognition engine is the

component of the sketch tool which is responsible for

the scope of domains. There are two different engine

designs; domain specific and generic. While the latter

are designed to recognize different diagram types,

specific engines are restricted to one domain.

The first published sketch tools had recognition

engines dedicated to one particular domain. For

example, Silk [10], as one of the first, was published in

1996 and was specifically designed to recognize UI

diagrams. Four years later Knight [6] followed, and

another two years later Tahuti [9] was designed to

recognize UML class diagrams. More recent sketch

tools are DEMAIS [3], Freeform [20] and SketchiXML

[5] which all recognize UI diagrams.

Examples for sketch tools which have a generic

recognition engine are Lank‟s framework [12],

SketchREAD [1] and InkKit [18]. Additional domains

can be added to each of these tools. However, the

implementation complexity varies significantly from

tool to tool. Lank‟s framework is the most expensive

one to extend in relation to code complexity and

amount of code.

The majority of diagrams recognized by the sketch

tools are from the fields of Computer Science and

Engineering; user interface diagrams [2, 4, 11, 13, 22],

UML class [6, 9] or circuit diagrams [1].

To our knowledge no sketch tool is capable of

recognizing diagrams from different domains in one

step and linking the generated output. However, when

using InkKit, multiple diagrams from the same domain

(for example linked UI pages Figure 1) can be

recognized and a unified representation can be

generated as if it were drawn in one sketch. Denim [16]

achieves a similar result by providing a very large

drawing space that is viewed at different levels of

abstraction. Actions at the higher levels of abstraction

determine the overall website and page attributes while

the detailed levels translate to the page component.

These automatically generated applications can interact

with each other because the necessary information was

exchanged during the interpretation process. In this

project we extend InkKit to handle multiple sketches

from two different domains and automatically generate

output that reflects their cross-relationships.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 65

Figure 2. Sketches of related user interface, class diagram and process hierarchy and notes page

InkKit Overview
Two main user interfaces represent InkKit‟s

graphical front end: sketch pages and a portfolio

manager. The portfolio acts as a container for the

sketch pages (see Figure 2). This design is robust and

well tested [19] and enables intuitive user interaction.

In addition to basic functions such as sketch page

resizing, moving and zooming, connectors between the

sketch pages can be added. They represent a

relationship between the connected pages. For

example, Figure 1 shows two sketch pages which are

connected with each other. The left sketch page

represents a list of city names which will be added to

the “connected” combo box when both user interface

diagrams are recognized and interpreted. The ability to

merge sketches enables an easy, clear and well-

arranged way to draw comprehensive diagrams. There

is no beautification applied to the sketches within

InkKit in order to preserve their hand-drawn

appearance [2, 24]. Beautification occurs naturally

when the recognizer output is rendered in another tool

– and this may be enhanced by applying layout

constraints as we have done by including ALM [14] as

a part of the Java output.

Figure 3 shows InkKit‟s overall architecture. The

recognition process consists of two main parts: the

domain-independent and the domain-dependent.

Starting with the independent part, the sketched strokes

are classified either as text or shape strokes. This is

done with the help of a decision tree which uses

features such as time, sketching speed and spatial

relationships for the classification [17]. Those strokes

recognized as letters are grouped into single words and

recognized by the operating system text recognition

engine.

Sketched shapes can consist of more than one

stroke. In order to use Rubine‟s [23] single stroke

algorithm, the strokes which constitute one shape have

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 66

Figure 3. Architecture InkKit

to be joined. This is done by iterating through the

strokes and measuring the distance between the

endpoints of two consecutively drawn strokes. If the

distance is within a predetermined threshold, both

strokes are joined by replacing them by a single

composed stroke [7].

After being joined the shapes are recognized. This

domain-independent process recognizes basic shapes

rather than complex domain-specific components. This

decomposition of the sketched complex shapes is

possible because all of them consist of a set of basic

shapes.

Figure 4. A combo box consisting of the basic shapes

rectangle and triangle

For example, Figure 4 shows the user interface

component “Combo Box”. In the first recognition step

this complex shape is decomposed into a triangle and a

rectangle, which then get recognized independently.

The basic shapes are taken from a predefined set such

as circle, rectangle and line which can be extended by

the user.

After all sketched strokes are recognized as basic

shapes (except those recognized as text strokes), these

results get handed over from the generic recognition

engine to the domain-specific one.

Each domain consists of components which the

user has predefined in the form of sketches. These

components are stored in the specific domain library.

InkKit‟s current version consists of nine domain

libraries: activity diagram, directed graph, undirected

graph, entity-relationship diagram, organization chart,

parsimonious data model graph, UML class diagram,

user interface and Venn diagram.

The first task of the domain-specific recognizer is

to cluster the basic shapes into groups based on the

basic shapes‟ spatial relationships. The computation of

these relationships is derived from spatial features such

as near or intersecting, relative position and orientation.

The result of these likelihood computations is then used

to calculate the probability of the basic shape groups to

be part of a domain specific complex component.

Finally, using the likelihood calculation results of

the basic shape groups, a hypothesis space is built

which includes all these possible group combinations.

Thereby groups are joined together to a complex shape

based on several factors such as their spatial relations

and their bounding box properties. Since a group of

strokes can already be a complex shape, a combination

can consist of one or more groups. The next step is to

compute probability tables for each of these

combinations of possible complex shapes. After all

combinations are classified, the one with the highest

probability gets assigned to its associated complex

shape and is taken out of the hypothesis space. This

association process is repeated in a descending order of

the combination‟s probabilities until all sketched

strokes are assigned.

In order to implement a new domain in InkKit, an

interpreter describing the domain‟s properties and

sketched examples of all of the components of that

domain have to be added. In addition to the examples

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 67

of the domain components, they have to be defined in

the interpreter. Furthermore, the relations of the

components and the domain-specific data model have

to be defined in the interpreter. The expense of

implementing such an interpreter significantly depends

on its scope of services. For example, the most

compact one consists of 150 lines of code (InkKit‟s

organization chart interpreter) and the most complex

one of 880 (InkKit‟s ER interpreter).

Once the interpreter is implemented, output

modules can be added to generate a representation of

the sketches in a specific format. Again, the scope of

services provided by the output module will determine

its complexity and size. Existing output modules range

from 130 lines of code (InkKit‟s graph text output

module) to 350 (InkKit‟s ER Microsoft Office Access

output module).

InkKit‟s general design is a composition of layered

code segments which communicate through interfaces.

Thereby a code segment is responsible for a specific

task. This enables an easy modification of the single

layers to integrate and test new technologies.

4. Cross Domain Requirements

To recognize relationships between diagrams of

different types and intelligently generate output that

leverages these relationships, the recognition engine

must pass information between the different types of

diagrams. There are two main approaches to enable the

information exchange: specifying and implementing a

communication protocol, or providing a shared object

acting as an information carrier which is passed to

every interpreter.

Communication protocol

The communication protocol is a more complex

method than the shared object. It would enable a direct

communication between the single interpreters. This

follows an “information on demand” approach which

means that an interpreter could ask for the needed

information at any time.

The detail of the protocol is as follows; first the

interpreter would start to analyze the results from the

recognition. If the interpreter discovers that it needs

additional information from another interpreter, it

generates a message, puts it on a communication stack

and places itself on hold until it gets the required

information. Then the next interpreter would start and

check the communication stack whether there is a

message which is addressed to it. If so, the interpreter

checks whether it could provide the necessary

information at this stage. If it can offer a satisfactory

answer it generates a message containing the

information, puts it on another communication stack

and deletes the message which it just answered. If the

interpreter cannot offer the information it would ignore

the request. This process would be repeated until every

interpreter has run at least once and the communication

stacks are empty.

Information carrier

An information carrier is a data structure which

contains all the information about a sketch. It is created

independently as a step of the page interpretation

without reference to related pages. The use of an object

as the information carrier instead of a communication

protocol results in several disadvantages:

 The order of interpretation must be predefined by

the user.

 Once the order is determined, the interpretation

sequence is fixed.

 Each sketch is interpreted exactly once. If the

needed information is not available at the time of

interpretation, there is no possibility to go back

when it is available.

 The interpreters have to store all information

which could be needed by other interpreters

which results in a waste of memory.

 The interpreter has to find the information in the

object.

However an information carrier also has the

advantages of being easier to implement and extend.

This extensibility is important when, as in this case, the

problem space is not well understood. It also is self-

contained, not requiring information about the problem,

the data, or how the data will be used.

5. Our Approach

In order to enable the interpretation of diagrams

from different domains in a single step we need to

extend InkKit and implement appropriate output

modules. As an example we have chosen to take two of

the three basic system models by combining the data

representation with the user interface (we simulate the

process information). The data is described in an ER

diagram and the UI is a simple sketched representation

(see Figure 5). InkKit‟s recognition engine has to be

adjusted to support multiple types of diagram

interpreters in the same portfolio and information

exchange between the interpreters has to be

established. The adjustments include the extension of

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 68

the domain interpreter, the addition of a loop to control

the interpretation process, and the implementation of a

MySQL output module. To enable the information

exchange between the interpreters a new data structure

must also be introduced to act as an information

carrier. To store and retrieve information from this data

structure the UI‟s Java output module and the ER‟s

MySQL module require modifications. Finally,

adjustments were made in both modules to interpret

and use the exchanged information.

Figure 5. InkKit's portfolio manager including a sketched ER diagram, user interface and processes

Figure 6. User Interface and Database table automatically generate from the sketches in Figure 5

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 69

Multi interpreter list
In order to interpret diagrams from different domains,

the interpreters from the sketched diagram domains

must be loaded. Previous implementations of InkKit

were only able to interpret one domain at a time, so

only one interpreter was loaded. For this project, the

variable which stored the interpreter was replaced by a

list. One instance of each interpreter is loaded and

passed to the next program layer, the recognizer. After

all sketches were recognized, they have to be

interpreted. While the recognition process assigns the

sketched components to their most likely predefined

matches, the interpretation brings a meaning into the

overall sketch. For example, after the ER diagram

shown in Figure 7 is recognized, its components are

known, i.e. the two entities, two attributes and 3

connectors. It is then the interpreter‟s task to give this

composition of elements a meaning. In this example the

interpreter would create a one-to-many relationship

between the two entities “address” and “street”, assign

attribute “one” to “address” and “two” to “street” and

determine that “one” and “two” are primary keys.

Figure 7. Entity Relationship diagram

Domain interpretation loop

The loop controlling the interpretation of the

sketches had to be extended to handle more than one

diagram domain. The loop‟s purpose is to process

relations between different sketch pages which are

indicated by connectors (called rubber bands) between

the sketches (see Figure 2). Until that point in time, the

loop could handle one interpreter and relate the

corresponding sketches from the domain (see Figure 2).

The method which contains the loop calls itself

recursively until all relations between the sketches are

discovered. The loop extension includes the

implementation of code which supervises the loop and

controls the sketch order, meaning that diagrams from

the same domain are processed consecutively.

After the sketches are interpreted, output modules

can generate format-specific code based on the

interpretation results. Every domain has output

modules which generate specific code; for example, the

UI domain has two output modules which generate

Java code and HTML code.

We implemented an enhancement to the Java code

output module to improve the aesthetics of the

generated output. Until this point, the Java output

module has not used a manager to organize the GUI‟s

layout. There are several layout managers available

such as Gridbag Layout Manager and ALM [14]. ALM

is focused on the tabstops between cells rather than on

the cells of grid like the Gridbag Layout Manager. This

generalization of grid-based layouts makes ALM the

more powerful manager in terms of adaptive layout

resizing [15]. By using the layout manager the form

appearance is enhanced, due to the standardized sizes

of components of the same type and the harmonized

positions of the components.

A MySQL output module was added as part of the

ER domain as it provides an ease interface to the Java

front end that we planned. The implementation consists

of 650 lines of code, making this module one of the

more complex InkKit output modules. The reason for

its size is the complexity of ER diagrams - different

sketch components are connected with each other and

therefore form a single, complex structure rather than a

collection of independent components.

InkKit extensions

After the necessary changes in InkKit‟s

implementation were made, the communication

between the interpreted sketches had to be established

in order to exchange information. Thereby, several

challenges had to be overcome which are explained in

this section.

If diagrams from different domains are interpreted

in one step, information can only be exchanged

sequentially. This makes it necessary to interpret

diagrams in a particular order.

Since InkKit‟s design follows a modular approach,

it only calls the interpreters and hands over the needed

information. This means that InkKit does not actively

coordinate messages between the different interpreters,

which is why the interpreters have to coordinate the

communication by themselves. We considered two

approaches to this, as describe above, a

communications protocol or information carrier object

passed between the interpreters. We decided to

implement the information carrier object because of

easier integration into InkKit‟s current architecture, the

lower degree of implementation complexity and the

lower complexity for maintenance.

InkKit has no information about the interpretation

at any stage due to the modular design which

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 70

encapsulates the recognition from the interpretation.

Therefore it cannot know the order in which the

sketches have to be recognized. To give the user the

possibility to order the sketches manually and not to

rely on a random sequence, a GUI listing the used

interpreters was implemented (see Figure 8). With its

help the user can reorder the interpreters. In case there

are several sketches from the same domain (i.e. they

have the same interpreter) they are ordered in a

consecutive order. Thereby the order from sketches

belonging to the same domain cannot be influenced.

Figure 8. Interface to order the interpreters

Since it cannot be guaranteed that the user knows

the correct order and that the information can be

provided when needed, the interpreter was designed to

be fault-tolerant. This means that if the information is

not available, the interpreter produces an incomplete

result which is then further used by an output module.

Afterwards, the gaps in the generated output code can

be manually completed by the user.

We took a pragmatic approach to the problem of

what information to provide: since the impact on

performance is low and enough memory will be

available all information which could be relevant at a

later time is stored.

Since InkKit does not know how much information

will be stored, it must provide a dynamic structure

which can handle as much information as necessary.

Therefore a list was implemented as the main carrier.

All information from one interpreter is stored in

attribute–value pairs in one list. There is one list per

sketch and, since multiple sketches from one interpreter

are possible, one list per interpreter. Including the main

information carrier list, a three-dimensional data

structure is used to exchange information between the

sketch interpretations (see Figure 9).

Figure 9. Three dimensional data structure which acts

as an information carrier between the sketch

interpretations

After the information storage system was designed

and implemented, the information retrieval was

implemented. Since an interpreter must search through

all information in a list, it has to specifically know what

to look for. Both information storage and retrieval were

implemented in the ER and UI interpreters.

Using this new cross domain interpreter, a set of

diagrams such as that in Figure 5 can be successfully

interpreted to produce a MySQL database and Java UI.

The generated UI is shown in Figure 6 including a table

which shows the data retrieved from the database. This

table is displayed by pressing the „Receive‟ button on

the UI. The process diagrams which contain the

information about how to submit and retrieve data from

the database are situated in the lower middle. The

ability to successfully recognize a process diagram is

not implemented in InkKit yet. However, for

presentation purposes it has been assumed that InkKit

could recognize them. It must be pointed out that while

the processes are currently hard-coded, the information

necessary for the sketch interpreters to communicate

with one another is available.

6. Discussion

When systems are created the first step is often to

outline the system‟s design and its capabilities. One

frequently-used and efficient method of doing this is to

sketch diagrams describing the single parts of the

complex system. InkKit and other sketch tools already

recognize different types of diagrams. However, all

these tools are limited to recognizing and interpreting

one diagram type at a time. By overcoming this

shortcoming, new opportunities are created such as

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 71

automatically generated interpretation results where the

different views interact with each other.

This demands an information exchange between

the sketches when being interpreted. Since InkKit‟s

modular design does not allow for direct coordination

of this exchange, the different diagram plug-ins are

required to do so. We found and explored several

possibilities to organize an information exchange. One

method is to use a communication protocol; another is

to pass a data structure along the sketch interpretation.

The latter has the advantage of being easier to extend

and implement. However, it also has many

disadvantages which a communication protocol would

solve. The biggest drawback is the fixed interpretation

order, which results in a sequential exchange schema

that cannot be altered: if information is needed it has to

be available otherwise the generated interpretation

result is incomplete. Another problem solved by the

communication protocol is the ability of the sketch

interpreters to specifically ask for information. With

the information carrier object approach all information

has to be stored to ensure that it will be available when

needed. The information carrier may also cause a

problem of how to find the relevant information within

the data structure.

Despite these drawbacks, the information-carrying

object was implemented as it has the advantage of

fitting more easily into InkKit‟s current architecture.

We now have a better understanding of the

requirements of the communication protocol which

needs to be carefully designed before implemented.

Any mistakes in its model would result in

communication limitations, making careful planning

necessary.

We simulate the existence of working process

diagrams to demonstrate the new capabilities of InkKit

regarding the information the diagram interpreters have

about each other. Without the process diagrams no

code defining the possible actions performed on the

exchanged information would have been generated. In

simulating the possible processes, we implemented

only very general methods to perform on the

information. These methods include the submission and

retrieval of data entered in the UI to and from the

MySQL database. Since the process diagrams

describing data submission and retrieval are simulated

their implementation was kept simple. For example, the

database query used to request information does not

include conditional statements even when information

from multiple tables is requested.

Implementing a cross-domain information

exchange between sketch interpreters into InkKit

enables many new sketch tool features, such as letting

the generated programs interact with each other.

7. Conclusion & Future Work

In this project we extended InkKit to recognize

diagrams from different domains in a single step and

connect the automatically generated preliminary

diagram sketches into a specific data format. A “single

step” means that the recognition, interpretation and

output generation of all sketches in the active portfolio

is computed in one run. Combining the representations

results in independent software components from the

various domains which interact with each other. Since

sketch tools were already able to recognize different

domains in separate steps, the next logical stage was to

interpret sketches from different domains in one step

and compute the relationships.

We explored different approaches to communicate

between the sketches while they were being interpreted.

We decided to use a three-dimensional list structure

(see Figure 9) to provide this information exchange.

This three-dimensional list structure was easier to

implement and maintain than the alternative

communications protocol.

In this project we realized the cross-domain

interpretation between the UI and ER diagrams.

Existing plug-ins in InkKit have been modified in order

to be able to exchange information with other diagram

interpreters. To make the information exchange more

flexible, the three-dimensional database should be

replaced by a communication protocol. This would

lead to a new set of opportunities such as an

information exchange which is independent from

interpretation order, is more intuitive and easier to

extend.

To assess the efficacy of these new capabilities a

detail evaluation study is necessary. The focus of this

evaluation should be on the new possibilities of

collaborative work between experts from different

domains.

8. References

1. Alvarado, C. and R. Davis, SketchREAD: a

multi-domain sketch recognition engine, in

ACM SIGGRAPH 2007 courses. 2007, ACM:

San Diego, California.

2. Bailey, B.P. and J.A. Konstan. Are Informal

Tools Better? Comparing DEMAIS, Pencil

and Paper, and Authorware for Early

Multimedia Design. in CHI 2003. 2003. Ft

Lauderdale: ACM.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 72

3. Bailey, B.P., J.A. Konstan, and J.V. Carlis.

DEMAIS: Designing Multimedia Applications

with Interactive Storyboards. in ACM

Multimedia. 2001.

4. Chen, Q., J. Grundy, and J. Hosking. An E-

whiteboard application to support early

design-stage sketching of UML diagrams. in

Human Centric Computer Languages and

Environments. 2003. Auckland, NZ: IEEE.

5. Coyette, A., et al. SketchiXML: towards a

multi-agent design tool for sketching user

interfaces based on USIXML. in Proceedings

of the 3rd annual conference on Task models

and diagrams. 2004. Prague, Czech Republic:

ACM Press.

6. Damm, C.H., K.M. Hansen, and M. Thomsen.

Tool support for cooperative object-oriented

design: Gesture based modelling on and

electronic whiteboard. in Chi 2000. 2000:

ACM.

7. Freeman, I. and B. Plimmer. Connector

Semantics for Sketched Diagram Recognition.

in AUIC. 2007. Ballarat, Australia: ACM.

8. Goel, V., Sketches of thought. 1995,

Cambridge, Massachusetts: The MIT Press.

9. Hammond, T. and R. Davis. Tahuti: A

Geometrical Sketch Recognition System for

UML Class Diagrams. in 2002 AAAI Spring

Symposium on Sketch Understanding. 2002.

10. Landay, J. and B. Myers. Sketching

storyboards to illustrate interface behaviors.

in CHI '96. 1996. Vancouver, BC Canada:

ACM.

11. Landay, J.A., Interactive sketching for the

early stages of user interface design. 1996,

Carnegie Mellon University: Pittsburg, PA.

12. Lank, E.H. A Retargetable Framework for

Interactive Diagram Recognition. in

Proceedings of the Seventh International

Conference on Document Analysis and

Recognition - Volume 1. 2003: IEEE

Computer Society.

13. Lin, J., et al. Denim: Finding a tighter fit

between tools and practice for web design. in

Chi 2000. 2000: ACM.

14. Lutteroth, C., R. Strandh, and G. Weber,

Domain Specific High-Level Constraints for

User Interface Layout. Constraints, 2008.

13(3).

15. Lutteroth, C. and G. Weber. Modular

Specification of GUI Layout Using

Constraints. in Software Engineering, 2008.

ASWEC 2008. 19th Australian Conference on.

2008.

16. Newman, M.W., et al., DENIM: An Informal

Web Site Design Tool Inspired by

Observations of Practice. Human-Computer

Interaction, 2003. 18(3): p. 259-324.

17. Patel, R., et al. Ink Features for Diagram

Recognition. in 4th Eurographics Workshop

on Sketch-Based Interfaces and Modeling

2007. Riverside, California: Eurographics.

18. Plimmer, B. and I. Freeman. A Toolkit

Approach to Sketched Diagram Recognition.

in HCI. 2007. Lancaster, UK: eWiC.

19. Plimmer, B., G. Tang, and M. Young. Sketch

Tool Usability: Allowing the user to

disengage. in HCI 2006. London: ACM.

20. Plimmer, B.E. and M. Apperley. Freeform: A

Tool for Sketching Form Designs. in BHCI.

2003. Bath.

21. Plimmer, B.E. and M. Apperley.

INTERACTING with sketched interface

designs: an evaluation study. in SigChi 2004.

2004. Vienna: ACM.

22. Plimmer, B.E. and M. Apperley. Software for

Students to Sketch Interface Designs. in

Interact. 2003. Zurich.

23. Rubine, D. Specifying gestures by example. in

Proceedings of Siggraph '91. 1991: ACM.

24. Yeung, L.W.S., Exploring beautification and

the effects of designs' level of formality on the

design performance during the early stages of

the design process in Department of

Psychology. 2007, University of Auckland:

Auckland.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 73

